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Abstract: Here I describe the difference between the classical 

mechanics and quantum mechanics. Also described the formulas 
involved in explanation of dynamical variables and their analogy 
between classical mechanics and quantum mechanics.  Additionally, 
added the “operators” used for indication of the dynamical variables in 
Quantum mechanics. 
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1. Introduction: 

As we know that classical mechanics explains the motion of the 
objects which moves with less than light velocity. They name as 
“Newtonian mechanics” and this can be applicable to all 
macroscopic bodies like planets to a small stone. Whereas the 
Quantum mechanics is called Relativistic mechanics applicable to 
bodies of less than Nano sized. In the view of classical mechanics, 

the motions of several of bodies can be easily explained by some 
fundamental formulas and they impart very accurate results. 

2. Classical mechanics says: 

In macroscopic world, the system’s static properties do not change 
with time. The mass of an object might be static property but the 
change in the system it explained by some dynamic variables. The 
way state of the system changes under particular actions is then 
explained by how the dynamical variable changes with time. Under 
these actions of forces some peculiar mathematical equations are 
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derived to elaborate motion of the bodies. “Equation of motion” ( 
most applicable equations )detailed the time dependent motion of 
the bodies. The parameter “time” more than zero imparts there 
some action on the macroscopic bodies. 

For example take a system ( a point mass) , mass “m” which exhibiting 
a static property. Let us consider the motion confines one dimensional 
linear space. According to classical mechanics, the state of the particle 
at any instant “t” is specified in terms of its position 	(ݐ)ݔ and 

velocity	ݒ௫(ݐ). Some other dynamic properties such as linear 

momentum 	௫(ݐ) = ܶ	 ௫, kinetic energyݒ݉ = 	௩మ௫
ଶ

, potential energy 

ܧ	 tota energy , (ݔ)ܸ	 = (ܶ + ܸ) etc, of this system depends only on “x” 
and 	ݒ௫ . The state of the system is known initially means that the 
numerical values of  (0)ݔ and 	ݒ௫(0) are mentioned. The below given 
equation describes the action on the particle in terms of a force , 	ܨ௫ 
acting on the particle and this external force is proportional to the 

acceleration, 	ܽ௫ = ௗమ௫
ௗ௧మ

 , where the mass (m)of the particle always 

remains constant. 

F୶ = ma୶ = m
dଶx
dtଶ

−− − (1) 

The sound waves are mechanical waves and some of beautiful examples 
are confirmed this hypothesis. Classical mechanics predicting the 
position and momentum of a particle simultaneously if initial position 
and the cause of force on the particle in the atom. But quantum 
mechanically it’s impossible and meaningless content by predicting the 
starting point of particle exactly in atom.  
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If a rope fixed at one end and the other is waved, then the observer on 
the other end will see a straight line and an ink mark on the rope 
observed by observer clearly and position of the mark can me identified 
accurately. Classically the equation takes place for the motion of that 
mark (we can imagine an electron in the place of ink mark), 

y(t) = A	sin	(wt + ∅) −−− (2) 

The displacement of wave with function time, t , is 	(ݐ)ݕ,  “A” 

represents amplitude of the particle in wave and “w”, and “Φ” are 
angular frequency and Phase of the particle. In addition we can 
precisely calculate the effective phase difference at point where other 
end of the rope fixed.  

But if an electromagnetic wave falls on the surface of the rigid end, the 
reflected ray is superimposed with incident ray. A standing wave takes 
place but  it does not observed by observer and very difficult to predict 
precisely the effective path difference at that moment.  

The equation for this action is illustrate as 	2μt	cos	r ± 	π = nλ − −− (3)   

 are the ߣ ,  “ represents the refractive index of solid material, ‘t ”ߤ"
thickness of rigid body, and wavelength of light.  

3. According to quantum mechanics the “state” of a system on atomic 
and subatomic scale is completely specified by a “state function”. 
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The dynamics of the system is described by the time dependence of 
this state function. The state function is a function of set of selected 
variables, called “canonic variables” of the system.For example the 
case of a particle of mass “m” constrained to move in a linear space 
along x –axis. The state function, which is designated by the symbol 
Ψ , is a function of “x”. The state of the particle changes with time 
is specified by Ψ(x,t) and the “wave function” of the particle also 
referred with the same. Sometimes the state function can also be 

expressed as a canonic conjugate variable to represent the position 
coordinate and linear momentum of the particle of the system. 
Mathematically it is shown as 	߰( ௫ܲ ,  The dynamic variables of . (ݐ
the particle can be formulated in either equivalent form or in either 
representation form. If the dynamical variables use the form	߰(ݔ,  ,(ݐ
it is said to be “Schrodinger representation” and 	߰( ௫ܲ ,  is used in (ݐ
“momentum representation”. 

The probabilistic, nature of the measurement process on the 
microscopic particles is imbedded in the physical interpretation of the 
state function. For example, the wave function ߰(ݔ,  is in general (ݐ
complex function of x and t ,  meaning it is a phasor of the form 

	߰ = |߰|݁థ with an amplitude |߰| and a phase Φ. The magnitude of the 

wave function ,	|߰(ݔ,  gives statistical information on the results of |(ݐ
measurement of the position of the particle. |߰(ݔ,  is then ݔଶ݀|(ݐ
interpreted as the probability of finding a particle in the collection of 
particles. In quantum mechanics, the action on the dynamic system is 
generally specified by a “observable” property corresponding to the 

“potential energy operator”, say ܸ(ݎ) 

In general, all dynamic properties are represented by “operators ” that 
are functions of x and ௫ෞ . A “hat ⋀ “ over a symbol in the language of 
quantum theory indicates that the symbol is mathematically an 

“operator”, which in the Schrödinger representation can be a function 
of x and / or a differential operator involving x. 
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For example, the operator representing the linear momentum, ௫ෞ , in 
the Schrödinger representation is represented by an operator that is 
proportional to the first derivative with respect to x, 

௫ෞ	 = −݅ℏ డ
డ௫
−− − (4)  

Where ℏ is the plank’s constant 	ℎ divided by 	2ߨ. 	ℎ is one of the 
fundamental constants and numerical value 	ℎ = 6.626 × 10ିଶ݁݃ݎ −  ݏ

Some of the operators listed below from the both classical & quantum 
mechanics, 

Classical quantity Quantum mechanical operator 

Cartesian components of position 
x,y,z 

,ොݕ,ොݔ  ݖ̂

Position vector     “r” ̂ݎ 

Momentum         “p“ 	(−݅ℏ∇ሬሬ⃑ ) 

Cartesian components of linear 
momentum 	௫௬௭ 

൬= −݅ℏ
߲
ݔ߲

,−݅ℏ
߲
ݕ߲

, = −݅ℏ
߲
ݖ߲
൰ 

Total energy                    E  ݅ℏ
߲
ݐ߲

 

 

The total energy of the system is generally represented as the 

“Hamiltonian ” and usually represented by the symbol 	ܪ . It is the sum 

of the kinetic energy and potential energy of the system as in 
Newtonian mechanics 

	H = 	
pො୶
2m

ଶ

+ V(x) = −	
ℏଶ

2m
∂ଶ

∂xଶ
+ V(x) −−− −(5) 

The Hamiltonian, plays a crucial role in the equation of motion dealing 
with dynamics of quantum systems.  
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The main equation of motion is postulated by Schrodinger is that the 
time – rate of change of the state function is proportional to the 
Hamiltonian “operating” on the state function. 

        	iℏ பந
ப୲

= Hψ −− − (6)  

For the 1- dimensional single particle system from Schrödinger 
representation gives a partial differential equation: 

	݅ℏ డట
డ௧

= ቂ−	 ℏ
మ

ଶ
డమ

డ௫మ
+ ܸ(ݔ)ቃ߰ − −− (7)  

Equation (7) is basic equation of motion in quantum mechanics. 
Schrödinger’s equation (6), in quantum mechanics is analogous to 
Newton’s equation of motion, eq(1), in classical mechanics .      

  

4. A fundamental distinction between classical mechanics and quantum 
mechanics is that, in classical mechanics, the state of the dynamic 
system is completely specified by position and velocity of each 
constituent part of the system. The accuracy of finding of a particle in a 
system is completely definite. But quantum mechanically it is 
impossible to give that accuracy because the velocity of the particle  is 
so speed (equal to speed of light) at the same time its size is so small. 
Only probable prediction of position of particle can be decided. 
Boundary conditions on the position of particle will applied to range 
from x=0 to x =L, then the probability distribution function 	|߰(ݔ)|ଶ is 

integrated over this range must be equal to 1and the wave function said 
to be normalize. 

	1 = න Ψ(ݔ)∗Ψ
ଵ


ݔ݀(ݔ) = න |Ψ(ݔ)|ଶ݀ݔ

ଵ


 

If the wave function is normalized, the absolute value of the probability 
of finding the particle in the range from x to x+dx is |Ψ(ݔ)|ଶ݀ݔ. 
According, there is also an average value, 	〈ݔ〉ஏ, of the position of the 
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particle in the state Ψ , which is called the “expectation value” of the 
position of the particle. 

ஏ〈ݔ〉 = 	න Ψ∗(ݔ)ݔΨ(ݔ)݀ݔ = න ݔଶ݀|(ݔ)Ψ|ݔ







 

5. Conclusion: The motion of a point object and its rest of dynamical 

properties can be easily determined by applying some fundamental 
physical phenomenon. But the exact position and momentum of a 
sub –atomic particles in atomic particles takes us towards 
challenging direction.  Classically the prediction of the position and 
momentum of a sub atomic particles and forces supporting to these 
particles to move around in specific speed etc precisely explained. So 

difficulty in that accuracy and definiteness like size of the nucleus 
and non-existence of electrons in nucleus was clearly explained by 
Quantum mechanics. See the world in Quantum mechanical way 
reveals the secrets behind matter. 
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