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STATIC STRENGTH   ANALYSIS   OF   ELLIPTICAL   CHORD
TUBULAR  T-JOINTS   USING  FEA

1. INTRODUCTION

1.1 Offshore Structures: Offshore structures used for oil and gas extraction have the
common function of providing a safe, dry working environment for the equipment and
persons those operates the platform. Jacket supported drilling equipment as a guide
for the piled foundations.  The substructure referred to as the jacket is a three dimensional
space frame made from large tubular steel members. The jacket which takes the
loadings from the top side and the sea environment is piled to the sea bed.theses piles
must also be able to resist tension as hydrodynamic forces on the structure have a
tendency to cause over turning.  To construct a steel jacket it is necessary to join the
large diameter tubular steel members in somewhere. These tubular joints or nodes are
major sources of difficulty and high cost in the design of jacket. Tubular joints can be
classified in to four categories. They are the simple welded joints, complex welded
joints, cast steel joints and composite joints.

Simple welded joints are those formed by welding two or more tubular members
in a single plane without overlapping of brace members and without the use of gussets,
diaphragms, stiffeners or grout. Unlike a pipe joint, the chord wall is left intact with the
hidden plug regions enclosed by the braces. The geometric and other notation for a
simple joint is shown [10] in Figure 1.1
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1.2  Literature review.   Bolt H.M.et.al [1] described the influence of chord length
and boundary conditions on K joint strength.Chen, W. F et.al. [2] Designed the Tubular
Members in Offshore structure. Fabricated and shown the merit of cylindrical steel
tubular section compared to other sections.  Chen & WU [3] used shell elements to
model the elastic plastic behavior of T joints with small deflection. Dutt D.et.al, [4]
parameters influencing the stress concentration factor join in offshore structures. He
explored various configurations in SCF and Loading types. J.S. Jubran and W.F.Cofer
[5] who employed the solid elements to generate T joint model.  This is found to be
successful for evaluating the ultimate joint load. Hameed. A.F. et.al [6] conducted
more experimental tests on the Elliptical T-tubular joints, which were compared with
circular chord tubular joints. employed shell elements to tackle the stress analysis
problem of T tubular joints. The results were compared with experimental data. The
experimental approach to obtain the joint data is expensive. The finite element method
is found to be a suitable alternative for solving tubular joint . Kanatani [7] carried out
some experimental studies on welded tubular connections with different loading cases.
But this was limited to only circular tubular joints. Nazari, A.e.al.[8] designed Parametric
Study of Hot Spot Stresses Around Tubular Joints With  Double Plates. He explained
the stress factor concentration at various pipe joints.  Strub. D et.al.[9] , Risk Based
Acceptance Criteria for  Joints Subject to Fatigue Deterioration. He explained the
how the joints subjected under fatigue conditions and stress
concentrations.Thandavamoorthy T. S.[10] developed the Finite Element Modeling of
the Behavior of Internally Ring Stiffened T-Joint of Offshore Platform. He studied the
three types of angular rings behavior and their strength under axial compression loading.

2. MODELING OF TUBULAR T-JOINT

2.1 Geometric model of the T-joint: The geometry and the dimensions of the T-joint
under study are same as those subjected to experimental investigation by Hameed et
al [6] as given in Table 2.1 For the purpose of comparison of experimental results we
have taken similar  Dimensions in this investigation .The material used in all cases are
mild steel. Type-1 refers to brace joined perpendicular to the minor diameter of elliptical
chord and Type-2 refers to brace joined perpendicular to the major diameter of elliptical
chord.
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2.2 Boundary conditions: In experimental study, the chord ends are bolted. The
Boundary conditions applied to the chord member of the T-joints are approximated to
chord end fixity for all degrees of freedom.

2.3 Loading conditions: The chord is held as fixed –fixed from both ends. Detailed
weld fillets are not modeled. The loads are applied for all the types to the free end of
the brace in different directions, depending on the load type. For tension and compres-
sion loading, the loads are uniformly distributed at every node of the free end of the
brace, where the upward is for tension loading and downward for compression load-
ing. For IPB loading and   OPB loading, the loads are applied to two points at the free
end of the brace, where the distance between the two points is the brace diameter d.
The load applied at the two points will create a couple (moment) at the free end of the
brace and cause the brace to deflect on one side, depending on the way the load is
applied. For IPB, the direction of deflection will be parallel to the chord tube while for
OPB the direction of deflection will be perpendicular to the chord tube. Only elastic
analysis was carried out.

a) Axial tension:

In the axial tension case the load was taken as upward direction is positive.
After creating the models [Type-1, Type-2] the chord Tube has to be fixed on both
ends. Then the brace has to consider as free end. At the top of the brace the loads
applied gradually then the deflection at the Tubular joint was displayed like that we
have to do number of other loading cases and observed the displacements then at the
maximum deflection the tubular joint was broken and the minimum displacement the
tubular joint values are observed. The safe load was obtained at the yield point from
the graph which is drawn between applied load and deflection. In this loading case
failures occurred at chord position near the joint region where the yielding of the chord
appears to occur around the brace.

b) Axial compression:

In the axial compression the downward direction is the load was considered
as negative. Basically the same above procedure followed for these loading cases
except the load-applied direction was downward. In this analysis also the loads ap-
plied at the end of the brace and displacements, stresses, were obtained and tabu-
lated. The maximum yield point obtained by drawing curve between applied loads and
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displacements. Similar procedure followed for other tubular joints also. The failure
associated with buckling and plastic deformation of the chord wall at brace chord
interception.

c) In-plane –bending:

In this case also the chord ends are fixed and brace end was considered as
free end. But in bending (the moments) at the end of the brace two points are selected
for load application. The distances between two points are equal to the brace diam-
eter. The load also applied parallel to the chord. While applying the load the couple
[moment] formed and it deflects parallel to the chord then the displacement stresses
were tabulated for the type1, typ2 respectively. The maximum yield point obtained
from the graph which is drawn between applied moments and deflection. Failure
occurs as the results of fracture of chord wall on tension side of the brace and plastic
bending and buckling of the chord on compression side.

d) Out-plane-bending:

In this case also the similar procedure of above case followed except the
direction of load application. Here the loads applied at the end of the brace of the two
points. The couple formed then the displacements, stresses are tabulated. But in this
case the loads are applied perpendicular to the chord Tube. The same procedure
followed at different loads for other types of models.  The maximum yield point ob-
tained from the graph. In this case the failure occurs as a result of local buckling of the
chord wall in the ‘vicinity’ of the brace saddle and compression side occurs.

2.4 Equations in Static Analysis

After using a discretization scheme to model the continuum, we have obtained an
expression for the total potential energy in the body as

P= ½ QT KQ - QT F        (2.1)

Where K is the structural stiffness matrix, F is the global load vector, and Q is
the global displacement vector.  Here, K and F are assembled from element stiffness
and force matrices, respectively.  We now have to arrive at the equations of equilib-
rium, from which we can determine nodal displacements, element stresses, and sup-
port reactions.
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The minimum potential energy theorem is now invoked.  This theorem is
stated as follows: Of all possible displacements that satisfy the boundary conditions of
a structural system, those corresponding to equilibrium configurations make the total
potential energy to a minimum value.  Consequently, the equations of equilibrium can
be obtained by minimizing potential energy (P) with respect to Q, the potential energy
P = ½ QT KQ - QTF subject to boundary conditions. Boundary conditions are usually
of the type.

Qp1  = a1, QP2 = a2, Qpr = ar        (2.2)

That is, the displacements along degrees of freedom (d o f ) p1,p2,…pr are specified to
be equal to a1, a2,…, ar, respectively.  In other words, there are number of supports in
the structure, with each support node given a specified displacement. Generally the
term d o f is used here instead of node, since a two-dimensional stress problem will
have two degrees of freedom per node.

It should be emphasized that improper specification of boundary conditions
can lead to erroneous results. Boundary conditions eliminate the possibility of the
structure moving as a rigid body. Further, boundary conditions should accurately model
the physical system.  Elimination approach for handling specified displacement bound-
ary conditions is give below.

There are multi-point constraints of the type

b1Qp1 + b2Qp2   =b0

Where b0, b1, and b2 are known constants. These types of boundary conditions are
used in modeling inclined roller supports, rigid connections or shrink fits. It should
be emphasized that improper specification of boundary conditions can lead to errone-
ous results.  Boundary conditions eliminate the possibility of the structure moving as a
rigid body.  Further, boundary conditions should accurately model the physical system.
Two approaches will now be discussed for handling specified displacement boundary
conditions of the type given in Eq.2.1 the elimination approach and the penalty ap-
proach.  For multi-point constraints in above equation, only the penalty approach will
be given, because it is simpler to implement.

To illustrate the basic idea, consider the single boundary condition   Q1 = a1.
The equilibrium equation are obtained by minimizing P with respect
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To Q, subject to the boundary condition Q1 = a1.  For an N – d o f structure, we have

Q = [Q1, Q2, QN] T

F = [F1, F2, FN] T

The global stiffness matrix is of the form
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We now observe that the (N-1 x N-1) stiffness matrix above is obtained simply by
deleting or eliminating the first row and column (in view of Q1 = a1) from the original
(N x N) stiffness matrix.  Equation 2.6 may be denoted as

KQ = F                (2.7)

Where K above is a reduced stiffness matrix obtained by eliminating the row and
column corresponding to the specified or ‘support’ d o f.  Equations 2.7 can be solved
for the displacement vector Q using Gaussian elimination.  Note that the reduced K
matrix is nonsingular, provided the boundary conditions have been specified properly;
the original K matrix, on the other hand, is a singular

Matrix .  Once Q has been determined, the element stress can be evaluated using the
following equation

           s = EBQ (2.8)
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Where  Q for each element is extracted from Q using element connectivity informa-
tion.

Assume that displacements and stresses have been determined. It is now
necessary to calculate the reaction force R1 at the support.  This reaction force can
be obtained from the finite element equation (or equilibrium equation) for node 1:

K11 Q1 + K12Q2  +  …  + K1N QN  =  F1 + R1   (2.9)

Here, Q1, Q2….. Qn are known.  F1, which equals the load applied at the
support  (if any), is also known.  Consequently, the reaction force at the node that
maintains equilibrium, is

R1=  K11 Q1 + K12 Q2  +  …  + K1N QN -  F1   (2.10)

Note that the element K11, K12,…K1N used above, which form the first row
of K, need to be stored separately.  This is because K in Eq. 2.7 is obtained by deleting
this row and column from the original K.

The modification to K and F discussed above are also derivable using
Galerkin’svariational formulation.

YT (KQ – F) = 0   (2.11)

For every Y consistent with the boundary conditions of the problem.  Specifically,
consider the constraint

Q1 = a1 (2.12)

Then, we require

Y1 = 0 (2.13)

Choosing virtual displacements  Y = [0,1,0,…0], Y =  [0,0,1,0,…0]T
, …..

Y=  [0,0,…0,1]T, and substituting each of these into Eq.3.11, we obtain precisely the
equilibrium equations given in Eq.2.6.

2.5. Von Mises Stress

Von Mises stress is used as a criterion in determining the onset of failure in
ductile materials.  The failure criterion states that the Von Mises stress sVM should be
less than the yield stress, sY of the material.  In the inequality form, the criterion may
be put as

          sVM£sY      (2.14)
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2.7. THEORETICAL ANALYSIS

The portion of the chord that is located directly under the brace acts as a
significant area as it carries the maximum loads acting on it on both horizontal diametric
ends. The displacement distributions can be translated in to approximate load
distributions on both chord ends as shown in Figure (2.3) and Figure (2.4).

3. RESULTS
The results from this work are presented in finite element outputs, followed

by final comparison. The result of finite element analysis for an elastic analysis is
presented.  The Von Misses Stress was obtained for each loading mode and then
takes further yield point to serve as a base for comparison.  The finite element model
of the T-joint, created using ANSYS pre-processor is shown in Figure 3.1.
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ANSYS FINITE ELEMENT RESULTS COMPRESSION LOADING FOR
TYPE – 1

The meshed model of the T-joint, when subjected to axial compressive load,
revealed that the portion of the chord directly under the brace is subjected to high
stresses. Von Mises equivalent stress is taken to define yield point. The joint yielded at
a compressive load of 25KN. The displacement distribution on the chord at yield is
shown in Figure 3.2. Near the intersection of the members, the displacements are
found to be high. As expected the displacements are greatest at the intersection of the
branch and chord.

3.2: Finite element model of the
Tubular T-joint type - 1

ANSYS FINITE ELEMENT RESULTS OF IN-PLANE BENDING
LOADING FOR TYPE – 2
Under in-plane bending moment load, the portion of the chord adjacent to the
intersection of the members yielded. The Von Mises stresses are found to equal the
yield stress at a bending moment load of 0.75 KN-m. The displacement distribution
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is shown in Figure 3.3. It is observed that one side of the brace acts as tension side
and other side as compressive side, with the portion of the cord directly under the
brace acts as translational stage between the two sides

Fig. 3.3: Finite element model of the
Tubular T-joint type - 2

ANSYS FINITE ELEMENT RESULTS OF OUT-OF- PLANE BENDING FOR
TYPE -2
Under out-of-plane bending moment load, the portion of the chord directly under the
brace is found to yield at a load of 0.46 KN-m, are shown in Figure 3.4

Fig. 3.4: Finite element model of the
Tubular T-joint type - 1
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4. CONCLUSIONS

An elastic analysis has been carried out. The result shows that the circular
brace is joined perpendicular to the elliptical chord with major diameter as longitudinal
axis i.e  Type2 joints are stronger than Type1 for all loading cases. • Failure for all
the types starts near the weld joint and it happens on the chord and not on the weld
itself. The reasonable agreement was obtained between the elastic analysis of
ANSYS and  LUSAS results for all types under all loading cases Reasonable
agreement was obtained between the finite element analysis results and the
experimental values for all loading cases. The Yield point’s difference varies between
1.62 and 8.0 percent. This is well within the experimentation error limit of 10 %. for
Tubular T-joint. Having validated the ANSYS package for elastic analysis of the
Tubular T joint, it can be expanded to model and design the inclined brace joints like
Y, K and X.

5. NOMENCLATURE

d = brace diameter l= length of brace             K structural stiffness matrix,

D = chord diameter T=thickness of chord      F global load vector      β =d/D

L= length of chord t= thickness of brace       Q global displacement vector
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